ELECTRICAL CONDUCTIVITY OF A GAS IN
PRESENCE OF EXTERNAL IONIZING RADIATION
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A numerical calculation is made of the current-voltage characteristic of a gas gap ionized by an ex-
ternal source in the case of ion—ion conductivity. The results obtained are compared with known approxi-
mate analytic solutions. The method of numerical integration of the set of equations is discussed.

The current-voltage characteristic of a gas ionized by an external source is calculated in [1,2], both
allowing for and neglecting space charge for an arbitrary geometry of electric field. The attempts to ob-
tain an exact analytic solution when space charge is taken into account run into considerable mathematical
difficulties, and the authors accordingly restricted the discussion to two limiting cases: Ohm's law obeyed
{voltage V — 0); almost complete collection of ions (V — «). The solutions obtained are used in [2] to de-
rive an approximate formula for the conduction current at arbitrary voltages. The method used to ex-
trapolate the current-voltage characteristic to intermediate voltages is not, however, unambiguous, and
the accuracy of the approximate formula obtained in [2] thus stands in need of additional refinement, In
the work reported in the present paper a digital computer was used to obtain a numerical solution to the
appropriate set of equations, and the solution was used to determine the current-voltage characteristic for
values of the collection efficiency f in the range 0.18 < f < 1, As shown in [2], the set of differential
equations in which allowance is made for space charge always has the same form for any system of elec-
trodes with uniformly distributed surface charge (in particular, for planar, cylindrical, and spherical
geometries). Accordingly, in the present paper for the sake of simplicity the current-voltage character-
istic will be calculated and the computational procedure discussed on the example of a planar geometry.

The initial set of equations, allowing for the creation and recombination of positive and negative ions,
has the following dimensionless form:
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Here ¢ is the dimensionless electric field; I is the dimensionless current of negative ions; f is the
collection efficiency; A and u are the dimensionless parameters of the problem; q is the intensity of
formation of ions by the external source; J is the total current; « is the ionic recombination coefficient; x
is the dimensionless coordinate, 0 = x = 1 (x = 0 is the cathode); and K, and K_ are the mobilities of posi-
tive and negative ions, respectively.

Set (1) is solved subject to the following boundary conditions:
I@=0 T{W=;F ‘ (2)

Set (1) together with boundary conditions (2) constitutes a boundary problem for a set of ordinary dif-
ferential equations. As the boundary conditions are prescribed at two points we require, in order to
numerically integrate the set, to prescribe at the initial point x = 0 the missing boundary condition for the
function € (x), For each test value of € (0) the set is solved, by the Runge—Kutta method, for example, and
the value of the function I(x) obtained at the other end of the segment is compared with the prescribed
boundary condition. The processes are repeated until {I(1) — f| < 6f, where & is a previously given small
number,

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 156-158,
January-February, 1973, Original article submitted April 26, 1972,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

129



50 In the case under investigation this sort of ranging method re-
quires a large amount of machine time, This comes about because the
solution is very sensitive to small changes of € (0), and & (0) must ac-
cordingly be sought with quite a high degree of accuracy,. If this is not

/’ done, the solution enters a region not corresponding to the physical con-
P

4y tent of the problem. A considerable simplification is achieved by re-
ducing the two-point boundary problem (1), (2) to a Cauchy problem,
This technique has been used with success in the numerical solution of
various boundary problems in hydrodynamics [3].
\ We transform set (1), (2) to an initial-value problem by means of
.20

a single-parameter transformation of the form
e=A%e, z=A%%, I=A%L, f= A%} (3)

where A is the parameter of the transformation and o, @,, ag are con-
/”\ stants which must be determined. In the new variables set (1) acquires
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44 e The requirement that set (1) be invariant under the above group
Fig. 1 of transformations leads to the following equalities for oy, a,, and ay:
y 01 — Qg = Oy —+ Q1, 0y — az =0, 2(ay— 1) =0
ri

This implies that ¢ = @y = a4, Set (1) then assumes the form
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f [’ In order to obtain the missing condition we set, for example,
/ £(0) = A, when A%g,(0) =A. This boundary condition does not depend

\

on oy or A if @y = 1. The boundary conditions for set (5) are finally
written

I (0) =0, e (0) =1 (6)

a2 Set (5) together with conditions (6) thus constitutes the equivalent

4 Cauchy problem, The value of the parameter A can be found from the

Fig, 2 boundary condition at the other end of the segment, which in the new
variables has the form

hinm=AY)=f "

The parameter A is determined by numerical solution of the Cauchy problem (5), (6) (for a fixed fy)
allowing for condition (7). Knowing A, we find with the aid of (3) the solution of the initial problem for

f=A4f (8)

By varying f, it is possible, in principle, to obtain the solution for any f. In other words, reducing
the initial problem to a Cauchy problem in the present case is justified when one needs to obtain a solu-
tion for f varying in a certain range. Thus, if in the ranging method a large number of test variants must
be computed in order to obtain the solution for each fixed value of f, then now each variant gives the solu-
tion of the initial problem for f defined by equality (8).

An analysis of set (5) shows that a solution satisfying condition (7) cannot be found for all f;. A cer-
tain boundary value f * exists such that for f, > f,* there is no solution of the Cauchy problem which
satisfies condition (7).
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On the other hand, for f; < fj* a solution can be obtained for any values of the coefficient f however
small, although in this case the parameter f, must be prescribed with sufficiently high accuracy. For
example, in order to obtain the solution of the initial problem for f =~ 0.3, the parameter f; must be pre-
sceribed correct to the seventh decimal place, This sort of computational procedure can be effected on the
Minsk~22 digital computer, for example, using the standard Runge —Kutta program, If a numerical solu-
tion is required for f < 0.3 one can go over to the Runge—Kutta algorithm with doubled accuracy (for the
Minsk-22 this means that one can work with numbers having 16 significant figures),

The results of a numerical integration of set (1) are presented in Figs. 1 and 2. Figure 1 shows plots
of the electric field versus the coordinate x for various values of the collection efficiency f (4 = 0.65,
A =4.33)., Curves 1-6 correspond respectively to f = 0.952, 0.750, 0.550, 0.405, 0.303, and 0.181. It can
be seen that for f = 0.181, for example, the curve can be approximated by a broken line varying according
to a linear law near the electrodes. Integrating the functions € (x) for the various f gives the current-
voltage characteristic in the form of the dependence of the collection efficiency on the dimensionless volt-
age

Vv —_—
U= Wl VK+/eq

Figure 2 shows the current-voltage characteristic calculated in this manner (curve 1) and also, for
comparison, the current-voltage characteristics obtained using Boag's formula [4] (curve 2)

f=201 4 (1 + 20/ 30y (9)
and the approximate formula of Vol'f and Polikanov [2] (curve 3)

2 e i i 72\
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(correcting for the misprint in formula (24) of [2])., It can be seen from Fig, 2 that, at any rate foru =
0.65 and A = 4.33 Boag's characteristic (9) passes above the calculated curve, the maximum relative devia-
tion (relative to the calculated curve) for the interval 0,181 < f < 1 being about 30%. Formula (10), on the
other hand, gives results that are too low, although it repeats the shape of the calculated curve rather bet-
ter in the given range for f (maximum deviation relative to the calculated curve about 24%),

In the case of electron—ion ¢onductivity, it was effectively not possible to obtain a solution for f
significantly different from unity upon numerical integrationwith the doubled-accuracy program.
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